
Formal Requirements-Based Programming for Complex Systems

James L. Rash, Michael G. Hinchey
NASA Goddard Space Flight Center

Information Systems Division
Greenbelt, MD 20771, USA

{james.l.rash, michael.g.hinchey}@nasa.gov

Christopher A. Rouff
SAIC

Advanced Concepts Business Unit
McLean, VA 22102, USA

rouffc@saic.com

Denis Gračanin
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061, USA

gracanin@vt.edu

Abstract

Computer science as a field has not yet produced a gen-
eral method to mechanically transform complex computer
system requirements into a provably equivalent implemen-
tation. Such a method would be one major step towards
dealing with complexity in computing, yet it remains the elu-
sive “holy grail” of system development. Currently avail-
able tools and methods that start with a formal model of
a system and mechanically produce a provably equivalent
implementation are valuable but not sufficient. The “gap”
that such tools and methods leave unfilled is that the formal
models cannot be proven to be equivalent to the system re-
quirements as originated by the customer. For the classes of
complex systems whose behavior can be described as a fi-
nite (but significant) set of scenarios, we offer a method for
mechanically transforming requirements (expressed in re-
stricted natural language, or appropriate graphical nota-
tions) into a provably equivalent formal model that can be
used as the basis for code generation and other transforma-
tions. While other techniques are available, this method is
unique in offering full mathematical tractability while us-
ing notations and techniques that are well known and well
trusted. We illustrate the application of the method to an ex-
ample procedure from the Hubble Robotic Servicing Mis-
sion currently under study and preliminary formulation at
NASA Goddard Space Flight Center.

Key Words: Validation, verification, formal methods

1. Introduction

The development of complex systems that have high lev-
els of dependability and reliability requires the developer to
represent the system as a formal model that can be proven
to be correct. Through the use of currently available tools,
the model can then be automatically transformed into code
with minimal, or no, human intervention and with a cor-
respondingly minimized chance of introducing errors. Au-
tomatically producing the formal model from customer re-
quirements would further reduce the chance of introduction
of errors by developers and would result in highly depend-
able complex systems.

We will not critique currently available system develop-
ment tools and methods that are based on formal models
here; but, to the best of our knowledge, they provide nei-
ther automated generation of the models from requirements
nor automated proof of correctness of the models. There-
fore, currently there is no automated means of producing a
system—or a complex procedure—that is a provably cor-
rect implementation of the customer’s requirements. Fur-
ther, requirements engineering as a discipline has yet to pro-
duce an automated, mathematics-based process for require-
ments validation.

2. Problem Statement

Automatic code generation from requirements has been
the ultimate objective of software engineering almost since
the advent of high-level programming languages. The need
for “requirements-based programming”, whereby require-
ments can be transformed into an implementation in a man-
ner that supports the entire lifecycle of the development pro-

cess, cannot be exaggerated [7]. Several tools and products
exist in the marketplace to automate code generation from
a given model expressed in a particular notation. However,
typically the code they generate includes portions that ei-
ther are never executed or cannot be justified from either
the requirements or the model. Moreover, existing tools do
not and cannot overcome the fundamental inadequacy of
all currently available automated development approaches,
which is that they include no means to establish a provable
equivalence between the requirements stated at the outset
and either the model or the code they generate.

Traditional approaches to automatic code generation pre-
suppose the existence of an explicit (formal) model of real-
ity that can be used as the basis for subsequent code genera-
tion. While such an approach is reasonable, the advantages
and disadvantages of the various modeling approaches used
in computing are well known and certain models can serve
well to highlight certain issues while suppressing other less
relevant details [16]. It is clear that the converse is also true.
Certain models of reality, while successfully detailing many
of the issues of interest to developers, can fail to capture
some important issues, or perhaps even the most important
issues.

2.1. Our Approach

Without a formal specification of the system under con-
sideration, there is no possibility of determining any level
of confidence in the correctness of an implementation of a
complex system. The formal specification must fully, com-
pletely, and consistently capture the requirements set out.
Clearly, we cannot expect requirements to be perfect, com-
plete, and consistent from the outset, which is why it is
even more important to have a formal specification, through
which errors, omissions, and conflicts can be identified. The
formal specification must also reflect changes and updates
from system maintenance as well as changes and compro-
mises in requirements, so that it remains an accurate repre-
sentation of the system throughout the lifecycle.

The Requirements-to-Design-to-Code (R2D2C) method
described in this paper is unique in that it allows for full for-
mal development from the outset, and maintains mathemat-
ical soundness through all phases of the development pro-
cess, from requirements through to automatic code gener-
ation. In this approach, engineers (or others) may express
system requirements as scenarios in constrained (domain-
specific) natural language, or in a range of other notations
(including UML use cases). These will be used to derive a
formal model that is guaranteed to be equivalent to the re-
quirements stated at the outset, and that will subsequently
be used as a basis for code generation. The formal model
can be expressed using a variety of formal methods. Cur-
rently we are using CSP, Hoare’s language of Communi-

cating Sequential Processes [11, 12], which is suitable for
various types of analysis and investigation, and as the ba-
sis for fully formal implementations as well as automated
test-case generation, etc.

The approach may be used to reverse engineer systems
(that is, to retrieve models and formal specifications from
existing code, and to “paraphrase” in natural language, etc.)
formal descriptions of existing systems. Not limited to gen-
erating high-level code, it may also be used to generate busi-
ness processes and procedures, and we are currently experi-
menting with using it to generate instructions for robotic de-
vices to be used on the Hubble Robotic Servicing Mission
(HRSM) (see Section 4). Further, we are exploring its po-
tential as a basis for an expert system verification tool, and
as a means of capturing expert knowledge for expert sys-
tems.

3. Requirements to Design to Code

3.1. R2D2C Method

The R2D2C approach involves a number of phases,
which are reflected in the system architecture shown in Fig-
ure 1. The following describes each of these phases.

D1 Scenarios Capture: Engineers, end users, and others
write scenarios describing intended system operation.
The input scenarios may be represented in a con-
strained natural language using a syntax-directed ed-
itor, or may be represented in other textual or graphi-
cal forms.

D2 Traces Generator: Traces and sequences of atomic
events are derived from the scenarios defined in D1.

D3 Model Inference: A formal model, or formal specifica-
tion expressed in CSP is inferred by an automatic theo-
rem prover—in this case, ACL2 [14]—using the traces
derived in D2. A deep1 embedding of the laws of con-
currency [9] in the theorem prover gives it sufficient
knowledge of concurrency and of CSP to perform the
inference. The embedding will be the topic of a future
paper.

D4 Analysis: Based on the formal model, various analy-
ses can be performed using currently available com-
mercial or public domain tools and specialized tools
that are planned for development. Because of the na-
ture of CSP, the model may be analyzed at different
levels of abstraction using a variety of possible imple-
mentation environments. This will be the subject of a
future paper.

1 “Deep” in the sense that the embedding is semantic rather than merely
syntactic.

D5 Code Generator: The techniques of automatic code gen-
eration from a suitable model are reasonably well un-
derstood. The present modeling approach is suitable
for the application of existing code generation tech-
niques, whether using a tool specifically developed for
the purpose, or existing tools such as FDR [3], or con-
verting to other notations suitable for code generation
(e.g., converting CSP to B [4]) and then using the code
generating capabilities of the B Toolkit.

It should be re-emphasized that the “code” that is gen-
erated may be code in a high-level programming lan-
guage, low-level instructions for (electro-) mechanical
devices, natural-language business procedures and instruc-
tions, or the like.

Paraphrasing, whereby more understandable descrip-
tions (above and beyond existing documentation) of ex-
isting systems or system components are extracted, is
likely to have useful application in future system mainte-
nance for complex systems where the original design docu-
ments have been lost or modified so much that the original
design and requirements documents do not reflect the cur-
rent system.

3.2. R2D2C Implementation

The current R2D2C implementation translates the CSP
model into Java code [5]; the derived design is transformed
into an equivalent software representation. The Java pro-
gramming language was selected both for tool implementa-
tion and for the target platform for the following reasons.

• Java is a general-purpose concurrent class-based
object-oriented programming language, with very few
implementation and hardware dependencies.

• An off-the-shelf implementation (library) of CSP for
Java [2] is available. While it does not provide direct
CSP-to-Java mapping, it conforms to the CSP model of
communicating systems for Java multi-threaded appli-
cations [15]. There is also support for distributed JCSP
components using JCSP.net [19].

• Java Swing [18], in combination with some Java IDEs,
greatly simplifies user interface development.

• Availability of many Java based translator develop-
ment tools.

The translators are implemented using the ANTLR [1]
tool that provides a framework for constructing recogniz-
ers, compilers, and translators from grammatical descrip-
tions. A discussion of ANTLR and some related tools can
be found in [17].

A planned front end tool, a scenario editor, will sup-
port this process. An additional planned tool will enable
an automated translation of constraints and restrictions into

a propositional form that can be subjected to formal proof
based on the CSP model. Appropriate algorithms will be de-
veloped to analyze properties of distributed systems that use
a CSP-like communication infrastructure [13]. CSP models
for a specific programming language implementation fur-
ther increase modeling capabilities (e.g., for Java [20]).

4. Example from NASA Hubble Robotic Ser-
vicing Mission

To illustrate the application of R2D2C in the verification
of complex robotic operations procedures, we select a ser-
vicing procedure from the Hubble Robotic Servicing Mis-
sion (HRSM)—which is in the planning phase of develop-
ment at NASA Goddard Space Flight Center (GSFC).

4.1. Background

As one of history’s most productive and significant sci-
entific instruments, the Hubble Space Telescope (HST) has
brought about new knowledge in astronomy and astro-
physics as well as increased public interest in those fields.
US Congressional recognition of its value resulted in the al-
location of funding to begin preparation toward saving the
telescope from destruction when it falls back to Earth due
to orbital decay over the next decade.

One possible approach to saving HST involves a Space
Shuttle flight to enable astronauts to refurbish the instru-
ment. Since the HST does not have its own propulsion sys-
tem, it would have to have one installed to enable it to boost
itself back to a safe orbit. This strap-on propulsion system,
delivered by the Shuttle and attached to HST by the astro-
nauts, would also enable the HST to safely de-orbit at the
eventual end of its life.

Another possible approach to saving the HST would
involve a robotic mission that would perform the same
tasks—refurbishment and attachment of a propulsion sys-
tem. NASA Goddard Space Flight Center has been studying
this alternative approach under the name “Hubble Robotic
Servicing Mission” (HRSM). The final decision on which
approach (or indeed whether any approach) will be carried
out has yet to be made, at the time of writing.

Originally designed to be serviced by astronauts, the
HST presents challenges to developing a servicing mis-
sion based on robotics. For example, safe robotic access
to replaceable internal components and safe manipula-
tion of those components and their connections require
development of unique tools, fixtures, techniques, and pro-
cedures. The satisfaction of power, communications, and
physical/thermal/electrical constraints and restrictions en-
tails a significant level of complexity in any procedures
that might be used by either robotic or human servic-
ing agents. In the following sections, we focus on the pro-

D4
Analyze

D5
Code

Generator

D3
Model

Inference

D1
Scenarios
Capture

existing prototype

future enhancement

commercially available

D2
Traces

Generator

Laws of
Concurrency

Theorem
Prover

Existing CSP
Tools

Visualization
Tools

Future
Bespoke Tools

Scenarios Traces CSP Spec
(Modified)
CSP Spec

Requirements
Documentation

Figure 1. The R2D2C method.

cedures that are being formulated for robotic agents to
carry out for this servicing mission. However, it is to be un-
derstood that even if human astronauts, instead of robots,
conduct the same servicing activities, the necessary proce-
dures would be similar, and in any case would have to be
formulated generally with the same level of detail and sub-
jected to the same overall mission constraints (thermal
restrictions, communications windows, etc.).

The robotic servicing mission under study assumes
the use of the Dextrous Robot (DR) “Dextre” built origi-
nally as the Special Purpose Dextrous Manipulator by MD
Robotics, Brampton, Ontario, Canada, for exterior mainte-
nance of the International Space Station.

The procedures currently under development are proving
to be extremely complex. Several of the procedures (such as
the example in Section 4.3) will take several days to com-
plete. The robots can only run for 8 hours per day, for a vari-
ety of reasons: battery life, availability of real-time commu-
nications with the ground operations center, etc. The lead
time from procedure planning to ultimate implementation
(if the servicing mission gets the go-ahead) is over 2 years.
Even then, it is anticipated that the mission will be under
pressure to prepare all of the necessary hardware and get all
of the procedures in place.

An additional level of complexity arises from the need to
completely regenerate the time-line for all of the procedures
once the robotic equipment is in orbit in proximity to the
telescope. To enable real-time video of the servicing mis-
sion, two Tracking and Date Relay Satellites (TDRS) will
be used to relay high-rate video data to the mission con-
trol center on the ground. However, one of the TDRS satel-
lites will be unavailable for 12 minutes every 90 minutes,
thus preventing a few of the operations for that time period.
Some parts of the procedures may continue (e.g., returning
the grapple arm to the ejection module), while others must
be halted until the operations are once again visible to mis-
sion controllers on the ground. Although the blackout pe-
riods can be calculated, their occurrence is based on the fi-

nal orbit of the robotic devices. Therefore, the exact black-
out times can only be calculated after launch, at which point
some of the procedures, especially those with tasks that ex-
ceed 78 minutes, may need to be regenerated.

4.2. Procedures

Figure 2, consisting of two screen shots from a run of
the prototype R2D2C tool, illustrates the use of R2D2C for
a simple procedure fragment. Figure 2(a) shows the natural
language input stage, while Figure 2(b) illustrates the gen-
erated CSP equivalent.

4.3. Specification of a possible procedure to re-
place the Wide Field Camera (WFC)

We will consider a portion of one possible version of a
procedure for robotic replacement of the Wide Field Cam-
era (WFC), chosen from an early version of the vast col-
lection of servicing procedures that have been developed to
date. We use this example to show, for one hypothetically
possible case, how an error in the procedure could be found
automatically by the R2D2C tool. We will illustrate its map-
ping from a natural language description to a formal model
upon which to perform reasoning and analysis to detect er-
rors (e.g., deadlocked actions or violations of constraints or
restrictions). An additional possible result (not illustrated
here) would be to transform the formal model into an imple-
mentation consisting of appropriate code that would, for ex-
ample, represent actual instructions that could be executed
by the robot.

The robotic elements involved in the procedure are the
Grapple Arm (GA), Dextrous Robot #1 (DR1), and Dex-
trous Robot #2 (DR2), along with a collection of special
tools, tool caddies, fixtures, etc. The other relevant items for
the procedure include the ejection module (EM), the new
WFC, and the HST itself with the old WFC that is to be re-
placed.

Figure 2. Snapshots of the R2D2C tools. (a) Natural language input; (b) generated CSP specification.

A sample procedure description is provided in Table 1.
This is the actual procedure description that will be used
in the HRSM (currently, the descriptions are written in this
format in MS Word with XML).

The procedure describes how to remove the WFC Tool
Caddy from stowage. Initially, GA, DR1, and DR2 are pow-
ered up, checked, and readied to perform the retrieval of the
WFC Tool Caddy. Only one of GA, DR1, and DR2 should
move at any time in order to avoid possible collision and
damage to the robot. This “mutual exclusion” rule must be
maintained in the procedure specifications. The GA then po-
sitions the robot in front of the EM. One of the dextrous

robots is then stabilized, while the other dextrous robot re-
moves the WFC Tool Caddy.

The fragment starts when GA sets the brakes. DR1 then
releases the brakes, stabilizes, and sets the brakes. DR2 then
releases the brakes, acquires the WFC Tool Caddy and sets
the brakes. The fragment of the procedure that we address
here can be stated in restricted natural language (Figure 3).

R2D2C then translates the fragment into CSP (Figure 4).
The CSP notation used is limited to the ACII character set
to insure compatibility with the other tools used.

This specification is very simple and does not capture the
sequential operation of GA, DR1, and DR2 and the “mu-

GA DR1 DR2
001:00:00 Daily GA/DR Power Up and

Checkout (00:15)
Daily GA/DR Power Up and
Checkout (00:15)

Daily GA/DR Power Up and
Checkout (00:15)

001:00:15 Retrieve WFC Tool Caddy
(01:33)

Retrieve WFC Tool Caddy
(01:33)

Retrieve WFC Tool Caddy
(01:33)

Command EM tool stowage
door open:

• Release Brakes (00:01)

• Maneuver to EM tool
stowage location (00:10)

• Set Brakes (00:01)

• Release Brakes (00:01)

• Stabilize (00:15)

• Set Brakes (00:01) • Release Brakes (00:01)

• Acquire WFC Tool Caddy
Micro-Fixture (00:20)

• Release WFC Tool Caddy
stowage bolt (00:10)

• Remove WFC Tool Caddy
from stowage (00:20)

• Set Brakes (00:01)

• Release Brakes (00:01)

• Release from Stabilization
(00:10)

• Set Brakes (00:01)

Table 1. Sample WFC procedure

GA sends brakeset.

DRone receives brakeset then sends brakerelease then sends stabilize then sends brakeset.

DRtwo receives brakeset then sends wfctoolaquire then sends brakeset.

Figure 3. A simplified procedure fragment

tual exclusion” requirement. Additionally, some steps for
the DR2 operation are omitted.

The next step is to add sequential constraints (Figure 5).
DR2 cannot continue until it receives a sequence of mes-
sages (brakerelease, brakeset) which is possible only when

DR1 completes its task.
The corresponding CSP is shown in Figure 6.
Constraints incorporated into the prototype R2D2C tool

are, at this stage, minimal in number, but serve to demon-
strate the potential of the R2D2C method in verifying

channel brakerelease, brakeset, stabilize, wfctoolaquire : T ;
GA = brakeset ! 0 -> GA ;\\
DRone = brakeset ? x -> brakerelease ! 0 -> stabilize ! 0 -> brakeset ! 0

-> DRone ;
DRtwo = brakeset ? x -> wfctoolaquire ! 0 -> brakeset ! 0 -> DRtwo ;
System = DRone [| {| |} |] DRtwo [| {| |} |] GA ;

process
GA = brakeset!0 → GA

process
DRone = brakeset?x → brakerelease!0 → stabilize!0 → brakeset!0 → DRone

process
DRtwo = brakeset?x → wfctoolaquire!0 → brakeset!0 → DRtwo

process
System = DRone ‖ DRtwo ‖ GA

Figure 4. An example fragment of the Wide Field Camera replacement procedure, as translated into
CSP, (a) in plain text, (b) prettyprinted.

GA sends brakeset.

DRone receives brakeset then sends brakerelease then sends stabilize then sends brakeset.

DRtwo receives brakerelease then receives brakeset then sends wfctoolaquire then sends brakeset.

Figure 5. A simplified sequential procedure fragment

robotic servicing procedures for the Hubble. To pro-
vide an illustration of the capability for automatic error
discover, we imagine that a real-time repair mission oper-
ations contingency has occurred and that the above proce-
dure fragment is proposed to be changed.

DR2, due (in this imagined contingency) to some techni-
cal problems, cannot release the WFC Tool Caddy stowage
bolt. As a consequence, DR1 now has to release the bolt to
enable DR2 to acquire the WFC Tool Caddy (Figure 7).

The prototype R2D2C tool transforms this scenario into
the CSP model in Figure 8. The tool automatically per-
forms a range of analysis and verification steps on this for-
mal model, resulting in the detection of a violation of a
servicing-mission constraint 9.

The violation is a deadlock that will cause DR2 to block.
Adding the bolt release at the end of the sequence, rather
than before setting the brakes, will give the result that the
trace (or sequence of messages) (boltrelease, brakeset) will
not be generated. Instead the sequence will be (brakeset,
boltrelease).

Although very simple, this error has a degree of sub-
tlety and might easily occur in the planning of the proce-
dures. DR2 releases the brakes at the same time DR1 sets
the brakes, thus violating the sequentiality requirement—an
error automatically detected by the R2D2C tool.

The full body of constraints and restrictions number in
the many hundreds, and have been formulated and docu-
mented for the HRSM. Compiled into the Constraints and
Restrictions Document (CARD), they embody a great deal
of complexity and become very demanding to apply man-
ually to validate a procedure, which provides considerable
justification for developing an automated means for proce-
dure verification.

The R2D2C tool can incorporate, and automates the ap-
plication of, arbitrarily many HRSM constraints and restric-
tions as well as other kinds of verification analysis to detect
errors and problems such as omissions, deadlock, livelock,
and unreachable steps.

channel brakerelease, brakeset, stabilize, wfctoolaquire : T ;
GA = brakeset ! 0 -> GA ;
DRone = brakeset ? x -> brakerelease ! 0 -> stabilize ! 0 -> brakeset ! 0

-> DRone ;
DRtwo = brakerelease ? x -> brakeset ? x -> wfctoolaquire ! 0 -> brakeset ! 0

-> DRtwo ;
System = DRone [| {| |} |] DRtwo [| {| |} |] GA ;

process
GA = brakeset!0 → GA

process
DRone = brakeset?x → brakerelease!0 → stabilize!0 → brakeset!0 → DRone

process
DRtwo = brakerelease?x → brakeset?x → wfctoolaquire!0 → brakeset!0 → DRtwo

process
System = DRone ‖ DRtwo ‖ GA

Figure 6. CSP for the sequential procedure fragment, (a) in plain text, (b) prettyprinted.

GA sends brakeset.

DRone receives brakeset then sends stabilize then sends brakeset then sends boltrelease .

DRtwo receives boltrelease then receives brakeset then sends wfctoolaquire then sends brakeset.

Figure 7. Modified sequential procedure fragment

4.4. Results and Future Tool Support

The application of the prototype R2D2C tool to the ex-
ample described above shows the potential benefit of an au-
tomated, mathematically sound method for verifying the
Hubble robotic servicing procedures. Demonstrating that
it can automatically detect violations of the documented
HRSM constraints and restrictions was an important step
towards establishing that the benefits existed for HRSM.

To move forward, it will be necessary to augment the
prototype R2D2C tool to ease the process of expressing
HRSM procedures in a form that can be automatically trans-
lated into a formal CSP model.

5. Related Work

Harel [6] [8] has advocated scenario-based programming
through UML use cases and play-in scenarios. The present
work differs in that it uses scenarios in the form of struc-
tured text that is easily understandable by engineers and

non-engineers. In addition, the results of converting the
structured text to traces and then from traces to a formal
model allows us to use a wide range of formal methods tools
(e.g., model checkers), which can be used to verify and val-
idate the system [10].

NASA Ames has been working on the automatic trans-
lation of UML use cases to executable code, and report suc-
cess in using the approach on large applications [21]. Our
approach is different, however, in that we are not limited
to UML use cases, nor to natural language. R2D2C accom-
modates any input mechanism whereby requirements can be
represented as scenarios, and traces extracted. Our approach
works equally well with graphical, mathematical, and tex-
tual requirements representations.

More importantly, the key to our approach and what
makes it invaluable for high-dependability applications is
the full formal basis, and complete mathematical tractability
from requirements through to code. To our knowledge, no
other currently available automated development methodol-
ogy can make this claim [10].

channel boltrelease, brakeset, stabilize, wfctoolaquire : T ;
GA = brakeset ! 0 -> GA ;
DRone = brakeset ? x -> stabilize ! 0 -> brakeset ! 0 -> boltrelease ! 0

-> DRone ;
DRtwo = boltrelease ? x -> brakeset ? x -> wfctoolaquire ! 0 -> brakeset ! 0

-> DRtwo ;
System = DRone [| {| |} |] DRtwo [| {| |} |] GA ;

process
GA = brakeset!0 → GA

process
DRone = brakeset?x → stabilize!0 → brakeset!0 → boltrelease!0 → DRone

process
DRtwo = boltrelease?x → brakeset?x → wfctoolaquire!0 → brakeset!0 → DRtwo

process
System = DRone ‖ DRtwo ‖ GA

Figure 8. CSP for the modfied sequential procedure fragment.

Figure 9. Snapshot of the R2D2C tool detect-
ing a deadlock error in example HRSM proce-
dure.

6. Conclusions and Future Work

R2D2C is a unique approach to the automatic derivation
of complex systems. It is unique in that it supports fully
(mathematically) tractable development from requirements
elicitation through to automatic code generation (and back
again). While other approaches have supported various sub-

sets of the development lifecycle, there has been hereto-
fore a “jump” in deriving from the requirements the formal
model that is a prerequisite for sound automatic code gen-
eration. Yet, R2D2C is a simple approach, combining tech-
niques and notations that are well understood, well tried and
tested, and trusted. The novelty of the approach, and the part
of the approach that achieves continuity in the development
process, is the use of a theorem prover to reverse the laws of
concurrency, and to achieve levels of inference that would
be impossible for a human being to perform on all but triv-
ial systems.

It is our contention that R2D2C, and other approaches
that similarly provide mathematical soundness throughout
the development lifecycle will:

• Dramatically increase assurance of system success by
ensuring

– completeness and consistency of requirements

– that implementations are true to the requirements

– that automatically coded systems are bug-free

– that implementation behavior is as expected

• Decrease costs and schedule impacts of complex sys-
tems through automated development

• Decrease re-engineering costs and delays

Future work will include improving the quality and ex-
tent of the embedding of CSP in ACL2, and optimizing that
for efficiency. We plan a plethora of support tools to al-
low us to easily change the level of abstraction in a for-
mal model, to visualize various system models and changes

in those models, and to aid in tracking changes through the
development process (or the reverse engineering process).
We plan to enhance our existing prototype to support the
full version of R2D2C, to make it into a fully functional ro-
bust prototype, and to apply it to more significant examples
than the one presented in this paper.

Acknowledgements

This work was encouraged and funded in part by NASA
Goddard Space Flight Center (GSFC) Information Systems
Division and the GSFC Technology Transfer Office. We are
grateful to Joe Hennessy, Ted Mecum, Nona Cheeks, Chris
Kirkman, Diana Cox, Yvette Conwell-Brown, and Keith
Dixon for their support and encouragement. John Erickson
(University of Texas at Austin) worked with us and pro-
vided invaluable expertise on the prototype R2D2C environ-
ment. We are grateful to the HRSM team, particularly Rud
Moe and Richard Strafella, for their support and collabora-
tion. The approach described in this paper is protected un-
der United States and international Patent Applications as-
signed to the United States government.

References

[1] ANTLR: ANother Tool for Language Recognition.
http://www.antlr.org/.

[2] Communicating sequential processes for Java (JCSP).
http://www.cs.kent.ac.uk/projects/ofa/jcsp/.

[3] Failures-Divergences Refinement: User Manual and Tuto-
rial. Formal Systems (Europe), Ltd., 1999.

[4] M. J. Butler. csp2B : A Practical Approach To Combining
CSP and B. Declarative Systems and Software Engineer-
ing Group, Department of Electronics and Computer Sci-
ence, University of Southampton, February 1999.

[5] J. Gosling, B. Joy, G. Steele, and G. Bracha. JavaTM Lan-
guage Specification. Addison Wesley, Boston, second edi-
tion, 2000.

[6] D. Harel. From play-in scenarios to code: An achievable
dream. IEEE Computer, 34(1):53–60, 2001.

[7] D. Harel. Comments made during presentation at “Formal
Approaches to Complex Software Systems” panel session.
ISoLA-04 First International Conference on Leveraging Ap-
plications of Formal Methods, Paphos, Cyprus. 31 October
2004.

[8] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine. Springer-
Verlag, 2003.

[9] M. G. Hinchey and S. A. Jarvis. Concurrent Systems: Formal
Development in CSP. International Series in Software Engi-
neering. McGraw-Hill International, London, UK, 1995.

[10] M. G. Hinchey, J. L. Rash, and C. A. Rouff. A formal ap-
proach to requirements-based programming. In Proc. IEEE
International Conference and Workshop on the Engineering
of Computer Based Systems, ECBS-2005, Greenbelt, Mary-
land, USA, 4–5 April 2005. IEEE Computer Society.

[11] C. A. R. Hoare. Communicating sequential processes. Com-
munications of the ACM, 21(8):666–677, 1978.

[12] C. A. R. Hoare. Communicating Sequential Processes. Pren-
tice Hall International Series in Computer Science. Prentice
Hall International, Englewood Cliffs, NJ, 1985.

[13] S. T. Huang. A distributed deadlock detection algorithm for
CSP-like communication. ACM Transactions on Program-
ming Languages and Systems, 12(1):102–122, 1990.

[14] M. Kaufmann and Panagiotis Manolios and J Strother
Moore. Computer-Aided Reasoning: An Approach. Ad-
vances in Formal Methods Series. Kluwer Academic Pub-
lishers, Boston, 2000.

[15] D. Lea. Concurrent Programming in JavaTM: Design Princi-
ples and Patterns. The JavaTM Series. Addison-Wesley Pro-
fessional, Reading, Massachusetts, second edition, 2000.

[16] D. L. Parnas. Using mathematical models in the inspection
of critical software. In Applications of Formal Methods, In-
ternational Series in Computer Science, pages 17–31. Pren-
tice Hall, Englewood Cliffs, NJ, 1995.

[17] Y. Smaragdakis, S. S. Huang, and D. Zook. Program genera-
tors and the tools to make them. In PEPM ’04: Proceedings
of the 2004 ACM SIGPLAN Symposium on Partial Evalua-
tion and Semantics-Based Program Manipulation, pages 92–
100. ACM Press, 2004.

[18] K. Walrath, M. Campione, A. Huml, and S. Zakhour. JFC
Swing Tutorial, The: A Guide to Constructing GUIs. Addi-
son Wesley, Boston, second edition, 2004.

[19] P. H. Welch, J. R. Aldous, and J. Foster. CSP network-
ing for Java (JCSP.net). In Proceedings of the Global and
Collaborative Computing Workshop (ICCS 2002), volume
2330 of Lecture Notes in Computer Science, pages 695–708.
Springer-Verlag, 2002.

[20] P. H. Welch and J. M. R. Martin. A CSP model for Java mul-
tithreading. In Proc. International Symposium on Software
Engineering for Parallel and Distributed Systems, pages
114–122, June 2000.

[21] J. Whittle, J. Saboo, and R. Kwan. From scenarios to code:
An air traffic control case study. In Proc. ICSE-25, 25th
IEEE/ACM International Conference on Software Engineer-
ing, pages 490–495, Portland, Oregon, 2003. IEEE Com-
puter Society Press.

